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Abstract. The adiabatic interaction potentials were obtained for the paradigm transition metal-rare gas
interactions: Sc(2D)–He and Ti(3F)–He and their di-cations. The ab initio approach included the cou-
pled cluster and multireference configuration interaction methods. He atoms form very weak van der
Waals complexes with Sc and Ti with well-depths of ca. 4–5 cm−1. The interactions are characterized
by the nearly-degenerate manifolds of adiabatic states with splittings of the order of 0.1 cm−1 or less.
The anisotropy of the Ti–He interaction is smaller than that for the Sc–He interaction. The origin of the
weak anisotropy of these interactions was analyzed. The exchange repulsion was found to be nearly the
same in the Σ, Π and ∆ states due to the valence d-electrons being submerged under the doubly filled 4s
electron sub-shell. The anisotropy of the total potential is controlled by the weakly-anisotropic dispersion
interaction.

PACS. 34.20.-b Interatomic and intermolecular potentials and forces, potential energy surfaces for colli-
sions – 31.50.Df Potential energy surfaces for excited electronic states – 31.15.Ar Ab initio calculations

1 Introduction

Open-shell atoms are very interesting and still relatively
poorly understood chemical species. Their chemical reac-
tions and inelastic processes make them of key importance
in the chemistry of atmospheres, plasmas, lasers, and more
recently, in ultracold matter. In open-shell atoms with
electronic nonzero angular momentum, a new type of elec-
tronic anisotropy is present which leads to the description
of intermolecular forces in terms of manifolds of potential
energy surfaces [1]. Such open-shell atoms are nonspher-
ical in the sense that they possess nonzero permanent
quadrupole moments and anisotropic dipole polarizability
tensors describing a state-dependent response to the exter-
nal electric field [2]. These properties give rise to the long-
range induction terms and to the dispersion anisotropy
in the interactions of these atoms with other spherically-
symmetric species.

The d-electron transition metals may be viewed as the
ultimate open-shell systems. The complexes of transition
metal atoms (TM) with rare gases such as He are inter-
esting for a variety of reasons. In such interactions the He
atom serves as a unique probe for the energy levels of the
(n−1)dN ns2 (N = 1, 2, . . .10) electron system. This level
structure is quite different from that of the main-group el-
ements due to a much higher density of states. For exam-
ple, while carbon has four electronic states within 7.5 eV
of the ground state, Ti has an infinite number (its ioniza-
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tion energy is 6.83 eV) [3]. Due to its small size and the
absence of p-electrons, the He atom may be viewed as an
ideal probe of the metal’s electron distribution including
such features as nodal planes [4,5].

The primary motivation for the study of the TM–He
interactions is their relevance to recent experiments on
trapping open-shell atoms and molecules at ultra cold
temperatures. One of the most promising and general
methods is based on buffer-gas loading [6]. The d-electron
transition metal atoms with non-zero angular momentum
are very appealing candidates for such experiments be-
cause they can be magnetically trapped. The efficiency
of such a process depends critically on rate constants for
elastic and inelastic collisions of TM atoms with He. Since
paramagnetic atoms are trapped in the Zeeman level with
the highest energy, collisions with helium atoms may in-
duce transitions to lower Zeeman levels leading to energy
release, heating and trap loss. Therefore, it is imperative
for the development of the buffer-gas loading experiments
to understand whether collisionally-induced Zeeman tran-
sitions are important on the time scale of the experi-
ment [7]. A particular appeal of these experiments stems
from the fact that the underlying physical principles can
be reduced to the partners’ collision properties and, ulti-
mately, to the interactions between them.

This paper will examine the van der Waals interactions
of Sc and Ti with He by an ab initio approach. There is
a substantial body of ab initio work describing similar in-
teractions involving open-shell, main-group elements with
rare-gases [8,9]. Partridge and Bauschlicher [10] studied
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several low-lying states of cations of the first-row transi-
tion metals with rare gases. Wilson et al. [11] studied di-
cations of the same group of metals interacting with He.
However, no ab initio investigations have been reported to
date on the neutral, most challenging equivalents.

The van der Waals interaction between a neutral TM
atom and He poses a number of challenges to a compu-
tational treatment. The interaction is relatively weak and
dominated by the dispersion effect. A removal of the de-
generacy of the lowest atomic terms of TM leads to man-
ifolds of closely-spaced states. The proximity of excited
atomic states makes the single-reference approaches inap-
plicable. The computational treatment should efficiently
account for electron correlation effects, precisely repro-
duce minute energy differences, and allow for the treat-
ment of multiple, coupled electronic states. In this work
the interaction potentials are calculated using a multi-
reference configuration interaction approach, and where
possible, compared with the single-reference coupled clus-
ter results. The examination of the electronic anisotropy
of these interactions, its magnitude, as well as its under-
lying origin is the primary goal of the present paper. It is
hoped that by understanding the nature of these interac-
tions it will be possible to identify the atoms amenable to
cooling and trapping experiments. A quantitative measure
of the interaction anisotropy in these complexes is pro-
vided by the ratio of the rate constants for elastic collisions
and Zeeman relaxation. The calculations of such elastic-
to-inelastic ratios on the potentials obtained here are re-
ported in reference [12] and the experimental measure-
ments of these quantities are presented in reference [13].
In the simultaneous development, the ab initio calcula-
tions of quadrupole moments and dipole polarizabilities
of selected first-row transition metal atoms were carried
out by Klos [14]. These results are of particular interest
to the present work.

2 Methods

The interaction of ground-state Sc(2D) atom with He gives
rise to three adiabatic potentials VΣ, VΠ, and V∆. The
interaction of the ground state Ti(3F) with He is described
by four adiabatic potentials VΣ, VΠ, V∆, and VΦ.

Two types of electronic structure calculations were
used. In the case where the single determinant wave-
function was suitable as a reference function, the unre-
stricted and restricted open-shell coupled cluster method
with single, double and non-iterative triple excitations
(U/RCCSD[T]) was used. Otherwise, the complete ac-
tive space self-consistent field (CASSCF) method [15] was
used to obtain the reference states; then the internally-
contracted multi-reference configuration interaction (IC-
MRCI) was applied [16]. All calculations were performed
with the MOLPRO suite of computer programs [17].

The interaction potentials Vi (i = Σ, Π, ∆, . . . ) were
obtained from the following energy differences which en-
compass both the size-consistency correction and the
counterpoise procedure (CP) [18] individually applied to

each state to correct for the basis set superposition error

Vi = Ei
TM−He(R; DBS) − Ei

TM(R; DBS)

− EHe(R; DBS) − ∆Ei
SC . (1)

DBS stands for the dimer basis set; ∆ESC is a resid-
ual size-consistency correction, which is omitted in the
coupled cluster calculations. DBS removes the degeneracy
of the atomic states giving rise to 3(4) monomer states.
In the MRCI calculations of TM-He and TM energies
the effects of higher excitations were included using the
IC-MRCI version of the Pople’s size-consistency correc-
tion [19]. The ∆ESC term was obtained by subtracting
the dimer and monomer energies in equation (1) evalu-
ated at R = 24 Å.

For the interpretation of our calculations it is con-
venient to define the isotropic (V0) and anisotropic (V2,
V4, . . . ) parts of the interaction potentials [20]. For a D-
state atom one has

V0 = (VΣ + 2VΠ + 2V∆)/5
V2 = (VΣ − V∆) + (VΠ − V∆)
V4 = 9/5(VΣ − V∆) + 3/5(V∆ − VΠ), (2)

and for the F-state atom one has [21]

V0 = (VΣ + 2VΠ + 2V∆ + 2VΦ)/7
V2 = 5/7(VΣ − VΦ) + 15/14(VΠ − VΦ)
V4 = 9/7(VΣ − V∆) + 3/7(VΠ − V∆) + 9/7(VΦ − V∆)
V6 = 13/7(VΣ − VΠ) + 13/14(V∆ − VΠ)

+ 13/70(V∆ − VΦ). (3)

The one-electron basis set consisted of the Bauschlicher
ANO contracted basis set [22] (denoted ANO) for Sc and
Ti, and for the He atom, of the contracted aug-cc-pVQZ
basis set [23] with g-type atomic orbitals omitted (denoted
avqz). Some calculations also included a set of bond func-
tions with 3s3p2d2f1g1h uncontracted Gaussian func-
tions with the exponents sp 0.9, 0.3, 0.1; df 0.6, 0.2; gh
0.3. Bond functions, which help saturate dispersion en-
ergy [24], were placed in the middle of van der Waals bond.

In the correlation calculations we varied the number of
orbitals excluded (i.e. frozen) from the single and double
excitations. Calculation with the 1s orbital of TM frozen
is denoted “core 1”, whereas keeping the two innermost
shells (i.e. 5 lowest orbitals) frozen, is denoted “core 5”.

The CASSCF calculations for Sc–He and Ti–He in-
cluded five d orbitals of the metal and one orbital of He in
active space. In Sc–He calculations the 4-state CASSCF
calculations with state averaging was carried out to gener-
ate the reference functions for the MRCI calculations. For
Ti–He the 10 state-averaged CASSCF was used to con-
struct the reference functions for the MRCI calculations
of the four lowest states correlating with the 3F term and
3 states corresponding to the next triplet 3P located ca.
8400 cm−1 above the ground state.
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Table 1. Calculated equilibrium positions (Re) and well-depths (De) of minima of three states of Sc–He and Sc2+–He. Energies
are in cm−1 and distances in Å; the parameters were obtained from spline fits. All values (except for the indicated “no CP”)
are BSSE corrected.

Computational approach Σ Π ∆
Re De Re De Re De

Sc–He
CCSD[T]/ANO+avqz+bf 5.60 4.09 5.60 4.01 5.75 3.84

core 1
CCSD[T]/ANO+avqz 5.71 3.39 5.71 3.33 5.81 3.16

core 1
CCSD[T]/ANO+avqz 5.71 3.39 5.71 3.32 5.81 3.16

core 5
MRCI/ANO+avqz 5.62 4.00 5.65 3.82 5.79 3.33

core 5
MRCI/ANO+avqz 4.75 38.00 4.75 31.80 5.00 26.68

core 5/no CP

Sc2+–He
RCCSD[T]/ANO+avqz 2.545 769.5 2.175 1724.8 2.21 1737.5

core 5

3 Results and discussion

3.1 Coupled cluster calculations: Sc–He, Sc+2–He

The three states, 2Σ, 2Π, and 2∆ of both the neutral and
the ionic systems differ by the single d electron occupying
three types of d-orbitals: dσ(Σ), dπ(Π), and dδ(∆). For
this reason the single-reference coupled cluster approach
can be used for these calculations. Below Sc–He will also
be studied using the MRCI method for the purpose of
comparison.

The calculated potential energy curves for Sc–He
interaction obtained at the UCCSD[T]/ANO+avqz+bf
(core 1) level of theory are shown in Figure 1. The po-
tential curves are strikingly close to each other. The order
of well-depths of the minima is 2Σ: (De = 4.09 cm−1 at the
minimum distance Re = 5.60 Å) > 2Π: (De = 4.01 cm−1

at Re = 5.60 Å) > 2∆: (De = 3.84 cm−1 at Re = 5.75 Å).
At short distances (R < 3.0 Å) the order of curves is the
following: Π is the least repulsive and Σ is the most repul-
sive.

The presence of bond functions, which improves the
description of dispersion, but increases the BSSE, may
pose problems in the context of the CP correction of the
MRCI calculations. The calculations without bond func-
tions reveal that the potential wells become considerably
shallower (see Tab. 1). The Σ state has De = 3.39 cm−1,
Π of 3.33 cm−1, and ∆ of 3.16 cm−1. The difference of
about 0.6–0.7 cm−1 represents a significant fraction of the
well depth of these complexes.

The effect of correlation of the innermost electrons on
the van der Waals interaction was also explored by keep-
ing the first 2 inner shells (core 5) frozen. These results
(Tab. 1) show that the core correlation has no effect on
the interaction energies (differences are of the order of less
then 0.01 cm−1). However, it should be added that the
ANO basis set may be viewed as insufficient for the pur-
poses of accounting for the core correlation energy. From
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Fig. 1. RCCSD[T] interaction potentials for Sc–He. Σ state –
circles; Π state – squares; ∆ state – diamonds.

this point forward the calculations employed the 5-orbital
frozen core.

In order to understand the source of near degener-
acy of the interaction potentials in Sc–He, the calcula-
tions for the Sc di-cation interacting with He were per-
formed. In the Sc+2 ion the 4s electrons are removed. The
results of the RCCSD[T]/ANO+avqz/core 5 calculations
are shown in Figure 2. The three interaction potentials
for Sc+2–He are much deeper than in the neutral sys-
tem. The order of the well-depths of the potentials is ∆:
1737 cm−1 at Re = 2.21 Å, very close to Π: 1725 cm−1 at
Re = 2.17 Å > Σ: 769 cm−1 at Re = 2.54 Å. The positions
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Fig. 2. RCCSD[T] interaction potentials for Sc2+–He. Σ state
– circles; Π state – squares; ∆ state – diamonds.

of minima shift toward the distances more than twice as
short as in the neutral system, indicating a strong back-
ward shift in the repulsive walls of the potentials. These
features suggest that the removal of 4s electrons drasti-
cally reduces the exchange repulsion. There is also some
increase in the attractive interaction due to the charge-
induce dipole effect (see below for more discussion).

Our results can be compared with the work of Wilson
et al. [11]. Their calculations predict that the ∆ state
is substantially deeper (1704 cm−1) than Π (1562 cm−1)
with the Σ state being much shallower (451 cm−1). This
discrepancy with reference [11] cannot be explained be-
cause our calculations with their basis set lead to the fol-
lowing values: Σ: 722.9 cm−1, Φ: 1705.5 cm−1, and ∆:
1712.1 cm−1.

3.2 MRCI calculations: Sc–He

MRCI/core 5 calculations employed ANO+avqz basis set
without bond functions. The MRCI approach predicts
the same order of minima. The Σ state well-depth is
4.00 cm−1 followed by that of the Π state, 3.82 cm−1, and
that of the ∆ state, 3.33 cm−1. The MRCI calculations
carried out in the identical basis set as RCCSD[T] pro-
vide slightly deeper potentials and the values are spread
slightly wider indicating that the MRCI anisotropy of po-
tentials is slightly larger. To quantify this observation, we
have compared in Figure 3 the isotropic V0 terms and the
anisotropic V2 and V4 terms generated by the two meth-
ods. It is seen that the isotropic potentials V0 are almost
identical in both approaches; V2 is more attractive in the
coupled cluster approach, and V4 is less repulsive at the
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Fig. 3. Comparison of V0, V2, V4 potentials (see Eq. (2)) for
Sc–He obtained by RCCSD[T] (solid lines) and MRCI (dashed
lines): V0 – circles, V2 – squares, V4 – diamonds.

MRCI level of theory. If we focus at the minimum region
(5 Å < R < 6 Å) V0 is slightly more attractive in the
MRCI, V2 is considerably more attractive in MRCI and
V4 is nearly the same in both calculations.

The MRCI potentials were obtained by applying in-
dividual counterpoise corrections to each of the states as
described in the previous section. In order to underscore
the necessity of the CP correction, the CP uncorrected
values are also included in Table 1. The well-depths from
the uncorrected calculations are nearly ten times larger
and vary from 38.0 cm−1 for the Σ state to 26.7 cm−1 for
the ∆ state. It is clear that in such weak interactions a CP
correction of the MRCI interaction energies is of crucial
importance.

3.3 MRCI calculations for Ti–He and Ti+2–He

The CASSCF+MRCI/ANO+avqz/core 5 calculations of
the Σ, Π, ∆, and Φ states correlating with the lowest
atomic term 3F show that the potential curves are very
close to each other (Fig. 4). The minimum parameters
shown in Table 2 indicate that the order of the well-depths
of the minima is Σ < ∆ < Π < Φ, while the differences are
of the order of a fraction of cm−1. It appears that the Ti–
He interaction is more isotropic than Sc–He. The isotropic
potential V0 and the anisotropic terms V2, V4, and V6 are
shown in Figure 5. The average potentials V0 are very
similar in both cases, whereas the leading anisotropic term
V2 in Ti–He is indeed closer to zero in the region of the
minimum than in Sc–He.
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Table 2. Calculated equilibrium positions (Re) and well-depths (De) of minima of three states of Ti–He and Ti2+–He. Energies
are in cm−1 and distances in Å; the parameters were obtained from spline fits. All values are BSSE corrected.

Computational approach Σ Π ∆ Φ
Re De Re De Re De Re De

Ti–He
MRCI/ANO+avqz 5.45 4.22 5.48 4.09 5.48 4.11 5.50 4.04

core 5

Ti2+–He
MRCI/ANO+avqz 2.06 2166.5 2.17 1649.0 2.37 1135.8 2.08 2192.6

core 5
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Fig. 4. MRCI interaction potentials for Ti–He. Σ state – cir-
cles; Π state – squares; ∆ state – diamonds; Φ state – triangles.

The ∆ state of the Ti–He interaction is the only state
in this system that has an essentially single-determinant
reference function. Therefore, this state can be examined
by both the RCCSD[T] and MRCI treatments. A detailed
comparison indicates that both approaches lead to nearly
identical potentials. This provides further verification of
our calculations.

The Ti+2–He interaction reveals the effects of remov-
ing the 4s electrons from Ti on the anisotropy of the
interaction. The MRCI calculations similar to those ap-
plied to Ti–He were carried out for the four lowest states
of this complex. As for Sc–He, the removal of the 4s
electrons leads to a drastic reduction of repulsion and
shifts the minima toward much shorter distances. The
strongest interaction of the Φ state (De = 2193 cm−1)
is closely followed by the Σ state (De = 2166 cm−1). The
Π state is considerably weaker (De = 1649 cm−1) and
the weakest is ∆ (De = 1136 cm−1). These values can
be compared with the results of Wilson et al. [11] who
used UCCSD(T) to calculate three out of four states (Π,
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Fig. 5. Isotropic V0 and anisotropic terms for Ti–He from
MRCI calculations. V0 – circles, V2 – squares, V4 – diamonds,
V6 – triangles.

∆, Φ) of this complex. Their results are in the same or-
der as our values, namely, Φ (De = 2132 cm−1) > Π
(De = 1789 cm−1) > ∆ (De = 1187 cm−1). However,
their Π state is significantly deeper.

3.4 Accuracy of the MRCI calculations of interaction
potentials

The Sc–He results allow for a detailed comparison of
RCCSD[T] and MRCI approaches. Such insights are es-
sential because very little is known about the performance
of MRCI in very weak van der Waals interactions involv-
ing open-shell species. Furthermore, MRCI is the only ap-
proach that can be applied to Ti–He.

One of the main differences between the approaches
consists of MRCI lacking the triple excitations present in
RCCSD[T]. The triples are essential for the description of
the dispersion energy, so one can expect the RCCSD[T]
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potentials to be deeper than those obtained with RCCSD
(see e.g. [25]). In the present context the direct compar-
ison between MRCI and RCCSD[T] may be complicated
by the fact that the inclusion of triples may compensate
for the deficiencies of the reference function. Nevertheless,
the following can be safely noted: the MRCI potentials
are slightly deeper but otherwise in good qualitative (the
order of well-depths) and quantitative (the magnitude of
anisotropy) agreement with RCCSD[T].

Second, our one-electron basis set is far from satu-
rated as revealed by the strong effect of bond functions
(see Tab. 1). Our estimate is that the potentials obtained
with ANO+avqz basis set may be underestimated by ca.
25% due to the incompleteness of the one-electron basis
set. The MRCI calculations did not use bond functions
because, in our experience, bond functions may lead to
erratic results when the CP correction is applied to the
MRCI energies.

Third, our adiabatic potentials do not include any rel-
ativistic effects. It has recently been shown by Klos [14]
that the inclusion of the Douglas-Kroll term (D-K) [26]
reduces the mean dipole polarizabilities of the first-row
transition metal atoms by ca. 1–7%. One should expect a
similar effect on the leading dispersion coefficient. Sadlej
and collaborators [27] found that the D-K correction af-
fects considerably the interaction potentials of Cu with
H2O and NH3.

To conclude, we believe that the MRCI approach leads
to reliable results for weak van der Waals interactions be-
tween first-row transition metals (with non-zero angular
momentum) and rare gases. Our calculated states are un-
derestimated by 25–30% in the minimum region; however,
it is expected that all the states should be rather uniformly
affected [4,5].

4 Sources of anisotropy

An open-shell atom with non-zero angular momentum
L is anisotropic in the sense that it possesses a perma-
nent quadrupole moment, as well as anisotropic dipole
polarizability [2]. In the interactions of such atoms with
spherically-symmetric rare gases these properties give rise
to state-dependent long-range interaction energy compo-
nents: induction and dispersion. The quadrupole moment
is related to the anisotropic induction energy with the
leading term vanishing as R−8. The dipole polarizability
anisotropy is related to the anisotropic dispersion term
with the leading component vanishing as R−6. The ex-
change effect in such interactions is also anisotropic and
offers important clues concerning the electronic structure
of the anisotropic atom. It is well-known that in the in-
teractions between an atom in a 2P state (e.g. a boron
atom; see [9]) with He, the exchange term provides a
strong distinction between the He approaching toward the
singly occupied 2p orbital (Σ) or toward the nodal plane
of this orbital (Π) due to the vastly different overlap.
Both the Heitler-London-exchange and induction energies
contribute to the Hartree-Fock (HF) interaction energy,

whereas the dispersion term appears in the post-HF in-
teraction energy term.

4.1 The short-range anisotropy

A partitioning into the HF and post-HF interaction energy
terms (Eint(HF) and Eint(corr)) was possible only for Sc–
He and Sc+2–He. The HF interaction energies are shown
in Figure 6a for the former and Figure 6b for the latter.
The neutral interaction is purely repulsive at the HF level
and nearly isotropic. The repulsive walls of Σ and Π states
are almost identical and that of ∆ is slightly more protrud-
ing. The induction interaction appears to be too small to
make the interaction energy negative in the asymptotic
region. We conclude that the exchange repulsion reflects
the isotropic behavior of the overlap of the 1s orbital of
He with the filled 4s orbital of Sc. Removing these outer
4s electrons, as in the case of Sc+2–He, exposes the 3d
orbitals to the overlap with the 1sHe orbital. As shown in
Figure 6b the HF interaction energy displays deep minima
and the interaction becomes strongly anisotropic. The ∆
curve lies below the Π curve by ca. 100 cm−1 whereas
the Σ curve is much less attractive. The minima at the
Eint(HF) curves occur at short distances 2.25 Å for ∆ and
Π and 2.75 Å for Σ. The anisotropy of this interaction can
be explained as follows: in the Σ state, He atom faces the
singly occupied dσ orbital which results in a larger overlap
and stronger repulsion, whereas in both Π and ∆ states
it lies in the nodal planes of dπ or dδ orbitals which leads
to a reduced exchange repulsion. When the repulsion is
reduced the atoms are allowed to approach closer and the
attractive induction effect (isotropic in C4, but anisotropic
in C6 term [2]) could take over.

4.2 Dispersion anisotropy

The information concerning the dispersion interaction can
be extracted from the post-HF, Eint(corr), contribution
to the interaction energy. This contribution is expected
to also include other effects that are of different physical
origin [4,5]. Nevertheless, the asymptotic behavior in the
neutral Sc–He is to a good approximation determined by
the dispersion energy. Following Aquilanti and Grossi [20]
we can define the leading dispersion coefficients of Σ, Π,
and ∆ states as:

CΣ
6 = C6,0 + 2/7C6,2

CΠ
6 = C6,0 + 1/7C6,2

C∆
6 = C6,0 − 2/7C6,2 (4)

where the C6,0 and C6,2 denote the average and
anisotropic dispersion coefficients, respectively, and V4,disp

is assumed to be equal to zero.
In order to determine the values of C6,0 and C6,2 the

values of Eint(corr) for the three states were used to
construct V0,corr, V2,corr, and V4,corr according to equa-
tion (2). These terms multiplied by R6 are shown in Fig-
ure 7a as a function of 1/R. The C6,0 obtained from the
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Fig. 6. Hartree-Fock interaction potentials Eint(HF) for (a)
Sc–He; (b) Sc+2–He. Σ state – circles; Π state – squares; ∆
state – diamonds.

fit is 31.4 au and C6,2 is –0.14 au. As seen in Figure 7a
the term V4,disp is very close to zero as predicted. The
anisotropy of the dispersion energy is very small.

Another source of information on the ratio of the
anisotropic to isotropic dispersion coefficients of Sc can
be obtained from C6,2/C6,0 = 7∆α/6α [14]. The com-
ponents of the dipole polarizability tensor evaluated via

(a)

(b)

Fig. 7. Asymptotic region of the correlation contribution to
the interaction potentials, Eint(corr), (for definitions see the
text) of (a) Sc–He; (b) Sc+2–He; V0 – circles, V2 – squares, V4

– diamonds.

the MRCI method in reference [14] lead to the ratio
7∆α(2, 0)/6α = −0.077. The ratio of the coefficients ob-
tained above is equal to –0.0045. This discrepancy can be,
at least partially, explained by comparing results of differ-
ent methods RCCSD[T] (C6), and MRCI (a), (see Ref. [14]
for more details).

Finally, let us examine the long range behavior
of Eint(corr) in the Sc+2–He cation. The interaction
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correlation in this case behaves asymptotically as R−4

indicating that Eint(corr) is dominated by the induc-
tion effects. Such a charge-induced dipole, C4/R4, induc-
tion effect is isotropic. By constructing V0,corr, V2,corr,
and V4,corr correlation-interaction potentials (see Fig. 7b)
the following long range coefficients were extracted: the
isotropic C4 = −0.124 au, C6,0 = 5.11 au, and C6,2 =
0.7 au. The ratio of C6,2/C6,0 = 0.14 is very similar to
that resulting from the ratio of polarizabilities from refer-
ence [14] which amounts to 0.54. It should be mentioned,
however, that both C6,0 and C6,2 may not be entirely due
to the dispersion effect, but may also include an induction
component (see Ref. [2]).

The accuracy of long-range MRCI potentials was not
sufficient to perform a similar fit to both the isotropic and
anisotropic C6 coefficients in Ti–He potentials. It was only
sufficient to provide an estimate of the C6,0 coefficient as
25 au. Interestingly, this value is smaller than C6,0 for
Sc–He and their ratio, 25/31.4 = 0.80, is very close to
that of the mean dipole polarizabilities of these two atoms,
100.16/118.71 = 0.84 [14].

5 Conclusions

He atom interacting with the first-row transition metals
Sc and Ti forms very weak van der Waals complexes with
well-depths in the range of 4–5 cm−1. These interactions
are characterized by nearly-degenerate manifolds of adia-
batic states with splittings of the order of 0.1 cm−1. The
anisotropy of the Ti–He interaction is smaller than that
in the Sc–He interaction.

The methodology of computing such weak, nearly de-
generate interaction potentials has been examined. The
three states of Sc–He, Σ, Π, and ∆, as well as one of
the four states of Ti–He, ∆, can be computed using both
RCCSD[T] and MRCI. The calculations for these states
served as a basis for the evaluation of the efficiency of the
MRCI method in the study of very weak van der Waals
interactions with multiple potentials. Our conclusion is
that the MRCI method can reliably reproduce such in-
teractions. We found that both the well-depths of these
potentials and the anisotropy are adequately described. A
state-specific counterpoise correction is mandatory in such
calculations. We estimate that the adiabatic potentials
presented in this work are ca. 25–30% underestimated (in
the minimum region) due, primarily, to the unsaturated
one-electron basis sets, and also due to the limited treat-
ment of the electron correlation. However, all the states
are expected to be uniformly affected.

The analysis of the nature of the Sc–He interaction
sheds light on the suppression of anisotropy. Our calcu-
lations demonstrate that in this complex the HF inter-
action, which is dominated by the exchange repulsion is
nearly the same in the Σ, Π, and ∆ states as a result of the
d-electrons being submerged under the filled 4s electron
sub-shell. Consequently, the overlap between the interact-
ing atoms (chiefly due to the 4sSc and the 1sHe orbitals)
is the same in all the states, and so is the exchange re-
pulsion. The results for the Sc+2–He and Ti+2–He, where

the outer 4s electrons are removed, indicate that the ex-
posure of d-electrons to the interaction leads to drastic
differences in the short-range repulsion among the states.
The anisotropy of the interaction in the neutral systems
is therefore controlled by the dispersion attraction.

The anisotropic properties of dispersion interaction
were examined by analyzing the correlation contribution
to the interaction energy in the asymptotic region. The
isotropic C6,0 and the anisotropic C6,2 dispersion coeffi-
cients were obtained for the Sc–He interaction. For the
Ti–He dispersion energy an estimate of the C6,0 coeffi-
cient was obtained. The small anisotropy of dispersion en-
ergy is in good agreement with the predictions based on
the dipole polarizability calculations. These polarizability-
based predictions suggest that, in the first-row transition
metals interacting with He, the dispersion effect should
become more isotropic as the number of electrons, n, in
the 3dn sub-shell increases.

This work was supported by the National Science Foundation
(CHE-0414241) and by the Polish Committee for Scientific Re-
search KBN. The authors wish to thank Roman Krems and
John Doyle for stimulating this work.

Note added in proof

Calculated ground states D0 (Ja = 2, J = 2, and parity +)
are: for Ti–He 0.726 cm−1 and Ti2+–He 1671.38 cm−1.
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